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Outline

 Overview

– High-performance computing and systems software

– Exascale on the horizon

 Next-generation filesystems

– Object storage systems

– Distributed data structures (C-MPI) 

 Reliability at extreme scale 

– Data placement for survivability

– Simulation and analysis of rebuild performance (GOBS)

 Many-file applications

– Swift and many-task computing

– Improvements for data access to many small files (CDM)
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High-performance computing

 Leadership systems

– ANL – IBM BG/P Intrepid @ 557 TFlops

– ORNL – Cray XT5 Jaguar @ 1.75 PFlops

– TACC – Sun Constellation Ranger @ 505 TFlops

 Clusters

– U of Chicago – Intel Xeon PADS – 48 nodes x 4 cores

– ANL – AMD Breadboard – 64 nodes x 8 cores

 Grids

– Open Science Grid – ~25,000 nodes

– TeraGrid – Access to a variety of high-performance resources
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Uses of high-performance storage (1)

 Checkpoint

– Write out all user memory to non-volatile storage

– Basic survival strategy to avoid lost work

 Optimal checkpoint interval

– First-order approximation to optimal checkpoint write interval

» to : checkpoint interval

» tw : time to write checkpoint

» tf : mean time to failure

 Future trends

– Bigger memory → longer writes

– More components → more faults

– Could reach a critical point
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Uses of high-performance storage (2)

 Useful application data

– MPI-IO

• Parallel interface for file I/O operations 

• Allows I/O experts to implement optimizations 

– High-level libraries

• Provide a variable-oriented view on data

• PnetCDF, HDF5, ADIOS

• Can use MPI-IO 

– POSIX I/O 

• Still prevalent in large-scale applications

• Must maintain user expectations, portability, but make use of high-performance 
machines
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PVFS – Clemson, ANL
Open source, community         
maintained

GPFS – IBM 
Licensed by IBM

Lustre – Oracle/Sun 
Open source but supported

PanFS – Panasas
Software/hardware packages 

Parallel filesystems

 Eliminate single bottlenecks in I/O
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Object storage

 Separation of concerns

 Employed by many modern systems – not “old news” either
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Distributed data structures
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Data placement in parallel filesystems

 Centralized metadata

 Distributed metadata

Future directions in large-scale storage systems

/

usr home

~wozniak

file

b[1]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

b[2]

/

file

b[1] b[2]b[0]

DISK DISK DISK DB

OBJECTS FSOBJECTSOBJECTS

/file

b[1] b[2]b[0]

~wozniak



Distributed metadata

 Design features

– Decentralized (fast)

– Reliable

– Distributed

– Consistent

 Distributed hash tables (DHTs)

– Originally designed for wide-area networks

– Self-constructing

– Self-organizing

– Self-healing

– Scalable

– …
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Server-server communication

 Metadata

– Distributed objects (distributed directories)

– Searches

 Collective operations

– Allocation of striped files 

– Control communication

 Network choices

– BMI

• Network abstraction layer

• Developed for PVFS, now a stand-alone system

– MPI

• Rich API for parallel programming

• Typically used by high-performance applications
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Content-MPI (C-MPI)

 New DHT implementation based on MPI

– MPI library allows integration with existing software, methods

– Abstraction over DHT details, placement algorithm

 Uses “monolithic” MPI or “dynamic processes” without application 
modification

– Monolithic

• “Normal” MPI usage

• Uses one big MPI communicator

– Dynamic processes

• MPI-2 feature set

• Dynamic processes allow for dynamic allocation and connection of independent 
processes

• Basic model for fault-tolerant MPI programs 
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C-MPI use cases

 MPI library

– Programming model analogous to Linda, blackboards

– Perform remote function on remote object

– Maintain critical application state in distributed, fault tolerant manner

 Distributed database

– Perform lookups for key/value pairs

– C heck on state of application progress

 Shell IPC

– Shell tools provided to communicate with background process linked to C-MPI

– Useful for many-task computing (more to come…)
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C-MPI internals

 Layered architecture

 MPI-RPC programming model

– Use non-blocking MPI calls

– Make progress on RPC return using user function pointer

– Help with management of many outstanding RPCs
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Kademlia

 Assign each node a 160-bit identifier

 Use XOR metric: 

distance(X,Y) = xor(X,Y) as integer

 Each node stores a neighbor table with 
O(log n) rows, k columns:

– For node X,
Row i contains k nodes Y : 

distance(X,Y) = xor(X,Y) [2i, 2i+1)     

 New neighbors discovered 
dynamically
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Performance results: SiCortex
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• Lookup RPCs per user lookup • Small key/value pair insertions; 
memory only



Fault-tolerance

 Fault emulation in MPI-RPC

– User sets node to emulate failure

– Subsequent RPCs “fail”

 Performs as expected

– Data still available

– Overlay network not partitioned

05/03/2010
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• Probability that a key/value 
pair is still available given a 
system size and fault count
• Replica count = 3



Fault-tolerance in MPI

 MPI Standard 

– Overall assumption: MPI users should not worry about faults

– Standard does allow communication errors to be reported to user

– Theoretically could recover from errors on one communicator, continue to use 
and create other communicators: this is our approach

– Difficult issues remain in the case of collective operations, blocking operations 
(cannot wait forever)

– May be addressed by new non-blocking collective operations and dynamic 
process functionality

 MPI implementations 

– Typically, cannot recover from errors 

– Work is being done…

05/03/2010

Future directions in large-scale storage systems

18



C-MPI: Summary

 Distributed storage requires highly scalable metadata management

 Distributed hash tables 

 Implementation

05/03/2010
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Object storage rebuild simulation
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Exascale storage challenges

 Number of disks

– Speed: to satisfy checkpoint requirements, will need ~30,000 disks 

– Capacity: may use additional storage hierarchy for space

 Required bandwidth

– ~12 TB/s

– New ability to manage many clients

 Redundancy

– Must plan to lose up to 10% of disks per year

– That’s 263 TB/day; 3.125 GB/s

 (Power)

05/03/2010
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Disk failure rates

 CMU study

– Typically ~5%/year

– Up to 13%

 Google study

– Below 5% in first year

– Peaks near 10% in year 3
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 GOBS simulation of 32,000 disks in RAID 5 (4+1 )
Plot shows inter-node traffic due to RAID loss



Simple data placement is problematic

 Combine local RAID with inter-node replication for availability

 Local RAID is relatively faster for read-modify-write operations

 Whole node loss – often temporary – managed with replicas
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 Replica chaining

 Simple, localized object 
placement

 On rebuild, creates a hot spot 
of activity

 Large declustered RAIDs

 Fully distributed

 On rebuild, all nodes involved, 
all write to one new disk

DISK DISK NEW DISK DISKDISK NEW DISK



Simulation as initial approach

 Simulated system
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 Workload simulation

 Idealized control

 Object servers



 General OBject Space (GOBS) simulator architecture
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 User interface

 Core functionality

 Replaceable components



Simulator - extensibility

 Extensible Java simulator

– Heavy use of inheritance

– Enable easy implementation of new schemes

 Class hierarchy:

05/03/2010
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GOBS results – rebuild hot spots

 600 servers; 30 TB disks; RAID 5 (4+1); disk transfer rate 400 MB/s; 

 1EB filesystem

 Single fault induced – rebuild performed

 Replica pulled from last in chain
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GOBS results – rebuild curves

 Single fault induced – rebuild performed

 Replica pulled from last in chain
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GOBS results – rebuild concurrency
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 Multiple faults induced – average 
traffic recorded

 Replica pulled from primary

 “target” – RAID (4+1)

 “san” – RAID (8+2)

 “active” – begin copies 
immediately

 “latent” – wait until replacement is
inserted



GOBS results – data loss

 Vary disk MTTF and report objects 
lost per year

 Neither scheme loses data unless 
MTTFs are extremely low

 Indicates that aggressive schemes 
may be used that favor user accesses

 (How does one quantify amount of 
data loss?)
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GOBS: Summary

 Data placement strategies matter when performing rebuilds

 Rebuild time matters over long data lifetimes

 Simulation can help evaluate placement strategies

 Much more to do here…
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Collective data management

05/03/2010
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Many-task computing

 Combine grid computing infrastructure with high-performance resources

 Reuse robust grid software systems 

 Use new, rapid schedulers (Falkon, Coasters)

 Plenty of applications

 Fault-tolerant, scalable
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Scripted applications

 Development timeline:

– Scientific software developer produces sequential code for application research

– Produces small batch runs for parameter sweeps, plots

– Small scale batches organized through the shell and filesystem

– Additional scaling possible through the application of grid tools and resources

– What if the application is capable of (and worthy of) scaling further? 
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Swift and related tools

 Separate workflow description from implementation

 Compile and generate workloads for existing execution infrastructures
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<sites.xml>
…

rawdata = sim(settings);
stats = analysis(rawdata);

…

compile

select resources

allocate resources

write script

 execute



Default I/O 

 In a standard Swift workflow, each task must enumerate its input and 
output files

 These files are shipped to and from the compute site 
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 This RPC-like technique is problematic for large numbers of short jobs



Data generation and access

 Current I/O systems work recognizes the challenges posed by large batches 
of small tasks

 Characterized by: 

– Small files

• Small, uncoordinated accesses

• Potentially large directories

– Whole file operations

– Metadata operations 

• File creates

• Links 

• Deletes

 Overall challenges

– BlueGene/P: 

• I/O bandwidth: down to 400 KB/s /core 

• File creation rate: only 1/hour /core (Raicu et al.) 
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Related work

 Filesystem optimizations

– PVFS optimizations for small files (Carns et al. 2009)

• Improved small object management

• Eager messages

– BlueFS client optimizations (Nightingale et al. 2006)

• Speculative execution in the filesystem client

• Mitigates latency

 Scheduling and caching

– BAD-FS (Bent et al. 2004)

– Data diffusion (Raicu et al. 2009)

 Collective models

– Enable programmer support

– Borrow from strengths of MPI, MPI-IO functionality

– Expose patterns explicitly (MapReduce, etc.)

05/03/2010
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Collective Data Management

 Provide primitives that the programmer can use explicitly

– May already be used via custom scripts

– Generally difficult to specify with sequential languages

 Broadcast (aggregation, map): 

» 

 Scatter (two-phase):

» 

 Gather (aggregation, reduce)

» 
05/03/2010
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Cache techniques

 Cache pinning (specify critical data)

»  

 Workflow/data-aware scheduling

» 
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I/O reduction

 Let applications continue to move large quantities of small data over POSIX 
interfaces

 Prevent these accesses from reaching the filesystem 
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I/O reduction

 The purpose of each potential CDM technique is to reduce accesses to the 
filesystem

 In our case studies, we sought to estimate the maximum possible reduction 
that a carefully-written application could achieve on our target system 
model

 In a default scripted workflow, all accesses go to the FS

 As a start, we used an I/O reduction defined as: 

 in bytes 

 Other interesting quantities could measure file creates, links, or a count of 
accesses regardless of size 
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Case studies: High-level view

 OOPS: Open Protein Simulator

 DOCK: Molecular docking

 BLAST: Basic Local Alignment Search Tool

 PTMap: Post-transformational modification analysis

 fMRI: Brain imaging analysis
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fMRI
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 Simple MapReduce-like structure

 Broken down into scatter and gather operations

 Intermediate data can be cached.  Produces much final output



BLAST
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 Like MapReduce with two inputs

 If cache is used to implement broadcast, must prevent pollution

 Produces trivial final output – I/O reduction may exceed 99%



DOCK
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 Significant input size

 Pipeline-like accesses

 Produces trivial final output – I/O reduction may exceed 99%



OOPS
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 Significant input size

 Pipeline-like accesses and iterations

 Produces trivial final output – I/O reduction may exceed 99%



PTMap
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 Pipeline-like accesses and iterations

 Uses links to create an intermediate index

 Produces trivial final output – I/O reduction may exceed 99%



Observations

 Great deal of potential optimizations

– Many of which are previously studied

– Difficult to implement with sequential programming models

 Small files

– Large input data sets must be read efficiently

– Many small files are created, written once, and possibly read again multiple 
times, primarily by transmission to other compute jobs

– Developer basically knows this – must be able to express it

 Patterns

– MPI-like concepts such as broadcasts, gathers, and even point-to-point messages 
help describe the I/O patterns

– Can be exposed to the developer through scripting abstractions

05/03/2010

Future directions in large-scale storage systems

49



CDM active client

 New CDM module allows for dynamic data access on the compute site

 Implemented by modifying Swift wrapper scripts

05/03/2010
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copy policy ( & inputs?)

(return outputs?)

compute



data access

CDM

Agg. C-MPI?Alt. FS HW Etc.?



Summary

 Investigated I/O performance characteristics of five scalable applications

– Laid out workflow job/data dependencies

– Compared with well-studied patterns

– Performed coarse studies of file access statistics

– Looked at idealized potential optimizations (gedankenexperiments) 

 Portability

– Running on the BG/P not unlike running on the grid

– Benefit from existing software systems

– Work within the typical scientific development cycle

 Lots to do

– Proposed new software toolkit and language integration

– Largely based on existing tools; package and expose to developers
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Questions
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